Handbook Of Analytical Instruments PDF

Title
Contents
1. Fundamentals of Analytical Instruments
1.1 Types of Chemical Analysis
1.2 Elements of an Analytical Instrument
1.3 Sensors and Transducers
1.3.1 Classification of Transducers
1.3.2 Performance Characteristics of Transducers
1.3.3 Smart Sensors
1.4 Signal Processing in Analytical Instruments
1.5 Read Out (Display) Systems
1.5.1 Analog Meters
1.5.2 Digital Displays
1.5.3 Laboratory Recorders
1.5.4 Video Display Units
1.6 Intelligent Analytical Instrumentation Systems
1.7 PC-Based Analytical Instruments
1.8 Mems in Analytical Instruments
1.9 Micro-Fluidics in Analytical Instruments
1.10 Methods of Analysis
1.10.1 Types of Instrumental Methods
1.10.2 Classification of Analytical Instruments
1.11 Performance Requirements of Analytical Instruments
1.11.1 Errors in Chemical Analysis
1.11.2 Types of Errors
1.11.3 Accuracy and Precision
1.11.4 Significant Figures
1.11.5 Application of Statistical Methods
1.11.6 Signal-to-Noise Ratio
1.11.7 Other Performance Parameters
1.12 Instrument Calibration Techniques
1.12.1 Calibration Curve Method
1.12.2 Standard Addition Method
1.12.3 Method of Internal Standard
1.13 Validation
2. Colorimetres and Spectrophotometers (Visible – Ultraviolet)
2.1 Absorption Spectroscopy
2.1.1 Electromagnetic Radiation
2.1.2 The Electromagnetic Spectrum
2.1.3 Interaction of Radiation with Matter
2.2 Laws Relating to Absorption of Radiation
2.2.1 Lambert’s Law
2.2.2 Beer’s Law
2.2.3 The Beer-Lambert Law
2.2.4 Deviations from Beer’s Law
2.2.5 Quantitative Analysis
2.2.6 Choice of Wavelength
2.2.7 Simultaneous Spectrophotometric Determination
2.3 Absorption Instruments
2.3.1 Radiation Sources
2.3.2 Optical Filters
2.3.3 Monochromators
2.3.4 Optical Components
2.3.5 Photosensitive Detectors
2.3.6 Slit Width
2.3.7 Sample Holders
2.4 Ultraviolet and Visible Absorption Spectroscopy
2.4.1 Types of Absorption Instruments
2.5 Colorimeters/Photometers
2.5.1 Single-beam Filter Photometers
2.5.2 Double-beam Filter Photometer
2.5.3 Probe Type photometer
2.5.4 Miniature Fibre Optic Spectrometer
2.5.5 Multi-channel Photometer
2.5.6 Pocket Colorimeter
2.5.7 Process Photometers
2.6 Spectrophotometers
2.6.1 Single Beam Spectro-Colorimeters/Spectrophotometers
2.6.2 Double-Beam Spectrophotometers
2.6.3 Microprocessor-Based Spectrophotometers
2.6.4 High Performance Spectrophotometers
2.6.5 Dual Wavelength Spectrophotometer
2.6.6 Scanning Spectrophotometers
2.6.7 The Derivative Technique
2.7 Sources of Error in Spectrophotometric Measurements
2.7.1 Instrument-related Errors
2.7.2 Non Instrumental Errors
2.8 Calibration
3. Infrared Spectrophotometers
3.1 IR Spectroscopy
3.2 Basic Components of IR Spectrophotometers
3.2.1 Radiation Sources
3.2.2 Monochromators
3.2.3 Entrance and Exit Slits
3.2.4 Mirrors
3.2.5 Detectors
3.3 Types of IR Spectrophotometers
3.3.1 Optical Null Method
3.3.2 Ratio Recording Method
3.4 Sample Handling Techniques
3.4.1 Gas Cells
3.4.2 Liquid Cells
3.4.3 Variable Path Length Cells
3.4.4 Sampling of Solids
3.4.5 Micro-sampling
3.5 Fourier Transform Infrared Spectroscopy
3.5.1 FTIR spectrometers
3.5.2 Major Components of FTIR Spectrophotometer
3.5.3 Advantages of FTIR
3.6 Calibration
3.7 Attenuated Total Reflectance Technique
4. Flame Photometers
4.1 Principle of Flame Photometry
4.2 Basic Flame Photometer
4.3 Constructional Details of Flame Photometers
4.3.1 Emission System
4.3.2 Optical System
4.3.3 Photosensitive Detectors
4.3.4 Recording System
4.4 Clinical Flame Photometers
4.5 Accessories For Flame Photometer
4.6 Expression of Concentration
4.7 Interferences in Flame Photometry
4.7.1 Flame Background Emission
4.7.2 Direct Spectral Interference
4.7.3 Self-Absorption
4.7.4 Effect of Anions
4.7.5 Effect of Ionisation
4.7.6 Solution Characteristics
4.8 Procedure For Determinations
4.8.1 Calibration Curve Method
4.8.2 Internal Standard Method
5. Atomic Absorption and Emission Spectrophotometers
5.1 Atomic Spectroscopy
5.2 Atomic Absorption Spectroscopy
5.3 Atomic Absorption Instrumentation
5.3.1 Radiation Sources
5.3.2 Burners and Flames
5.3.3 Graphite Furnace for Atomization
5.3.4 Optical System
5.3.5 Electronic System
5.3.6 Sampling System
5.4 Atomic Emission Spectroscopy
5.5 Atomic Emission Spectrophotometer
5.6 Plasma Excitation Sources
5.6.1 Direct Current Plasma (DCP)
5.6.2 Inductively Coupled Plasma (ICP)
5.6.3 Microwave-Induced Plasma (MIP)
5.7 Performance Aspects
5.8 Sources of Interferences
5.8.1 Anionic Interference
5.8.2 Viscosity Interference
5.8.3 Ionization Interference
5.8.4 Broadening of Spectral Line
6. Fluorimeters and Phosphorimeters
6.1 Photoluminescence Spectroscopy
6.2 Fluorescence Spectroscopy
6.3 Principle of Fluorescence
6.3.1 Relationship Between Concentration and Fluorescence Intensity
6.3.2 Advantages of Fluorescence Technique
6.4 Measurement of Fluorescence
6.4.1 Single-Beam Filter Fluorimeter
6.4.2 Double-Beam Filter Fluorimeter
6.4.3 Ratio Fluorimeters
6.5 Spectrofluorimeters
6.6 Microprocessor-Based Spectrofluorometer
6.6.1 PerkinElmer Fluorescence Spectrometer Model LS-3
6.7 Measurement of Phosphorescence
6.7.1 Phosphorescence Spectrometer
7. Raman Spectrometer
7.1 The Raman Effect
7.2 Raman Spectrometer
7.2.1 The Source
7.2.2 Sample Chamber
7.2.3 The Spectrometer
7.2.4 The Detector
7.2.5 Computer
7.3 PC-Based Raman Spectrometer
7.4 FT Raman Spectrometer
7.5 Infrared and Raman Microspectrometry
8. Photoacoustic and Photothermal Spectrometers
8.1 Photoacoustic Spectroscopy
8.1.1 System Components
8.1.2 Typical Photoacoustic Spectrometers
8.1.3 FTIR Photoacoustic Spectroscopy
8.2 Photothermal Spectroscopy
8.2.1 Excitation Sources
8.2.2 Basic Processes in Photothermal Spectroscopy
8.2.3 Photothermal Instrumentation
9. Mass Spectrometers
9.1 Basic Mass Spectrometer
9.2 Principle of Operation
9.3 Types of Mass Spectrometers
9.3.1 Magnetic Deflection Mass Spectrometer
9.3.2 The Time-of-Flight Mass Spectrometer
9.3.3 Radio Frequency Mass Spectrometer
9.3.4 Quadrupole Mass Spectrometer
9.4 Components of a Mass Spectrometer
9.4.1 The Inlet Sample System
9.4.2 Ion Sources
9.4.3 Electrostatic Accelerating System
9.4.4 Ion Detectors and Recording of Mass Spectrograph
9.4.5 Vacuum System
9.5 Inductively Coupled Plasma Mass Spectrometer
9.6 Trapped Ion Mass Analyzers
9.7 Quadrupole Ion Trap Mass Spectrometer
9.8 Fourier Transform Mass Spectrometry (FT-MS)
9.8.1 Ion Cyclotron Resonance (ICR) Mass Spectrometery
9.8.2 Orbitrap Mass Spectrometry
9.9 Tandem Mass Spectrometry (MS/MS)
9.10 Resolution in Mass Spectrometry
9.11 Applications of Mass Spectrometry
10. Nuclear Magnetic Resonance Spectrometer
10.1 Nuclear Magnetic Resonance Spectroscopy
10.2 Principle of NMR
10.2.1 Nuclear Spin
10.2.2 Nuclear Energy Levels
10.2.3 Resonance Conditions
10.2.4 NMR Absorption Spectra
10.2.5 Relaxation Process
10.2.6 The Chemical Shift
10.3 Types of NMR Spectrometers
10.3.1 Continuous-Wave NMR Spectroscopy
10.3.2 Fourier Transform NMR Spectroscopy
10.4 Constructional Details of NMR Spectrometer
10.4.1 Magnetic Field
10.4.2 The Radio-Frequency Transmitter
10.4.3 The Signal Amplifier and Detector
10.4.4 The Display System
10.4.5 Data Display and Record
10.4.6 The Sample Holder
10.5 Computer Controlled NMR Spectrometer
10.6 Sensitivity Enhancement for Analytical NMR Spectroscopy
10.7 Spin Decoupler
10.8 Fourier Transform NMR Spectroscopy
11. Electron Spin Resonance Spectrometers
11.1 Electron Spin Resonance
11.2 Basic ESR Spectrometer
11.3 Components of an ESR Spectrometer
11.3.1 The Magnet and the Magnetic Field Controller
11.3.2 Microwave Bridge
11.3.3 Modulation Unit
11.3.4 Detection Methods
11.3.5 Recorder
11.3.6 Oscilloscope
11.3.7 Sample Cavities
11.3.8 Sample Cells
12. Electron and Ion Spectroscopy
12.1 Surface Spectroscopic Techniques
12.2 Electron Spectroscopy
12.2.1 Electron Spectroscopy for Chemical Analysis (ESCA)
12.2.2 Auger Electron Spectroscopy (AES)
12.3 Instrumentation for Electron Spectroscopy
12.3.1 Radiation Sources
12.3.2 Energy Analysers
12.3.3 Electron Detectors
12.3.4 Read-Out System
12.3.5 Vacuum Systems
12.3.6 Magnetic Shielding
12.3.7 Sample Handling
12.4 ION Spectroscopy
12.4.1 Instrumentation for Ion Spectroscopy
13. Scanning Electron Microscope
13.1 Background
13.1.1 Optical vs. Electron Microscope
13.2 Scanning Electron Microscope (SEM)
13.3 Types of Signals in SEM
13.4 Components of SEM
13.4.1 Electron Beam Generator
13.4.2 Electron Lenses
13.4.3 Focus and Alignment:
13.4.4 Accelerating Voltage
13.4.5 Detectors
13.4.6 Display
13.4.7 The Vacuum System
13.5 Digital SEM
13.6 Scanning Transmission Electron Microscopy (STEM)
14. Scanning Probe Microscopes
14.1 Scanning Probe Microscopy
14.2 Scanning Tunnelling Microscope (STM)
14.2.1 Principle of STM
14.2.2 Components of STM
14.2.3 Requirements of Various Components
14.2.4 Electronic Circuit
14.2.5 Modes of Operation
14.2.6 Applications of Scanning Tunnelling Microscopy
14.3 Atomic Force Microscope
14.3.1 What Is Atomic Force Microscopy?
14.3.2 Components of AFM
14.3.3 Modes of AFM
14.3.4 Magnification of AFM
14.3.5 Resolution in an AFM
14.3.6 Applications of AFM
15. Radiochemical Instruments
15.1 Fundamentals of Radiochemical Methods
15.1.1 Time Decay of Radioactive Isotopes
15.1.2 Units or Radioactivity
15.1.3 Types and Properties of Particles Emitted in Radioactive Decay
15.1.4 Interaction of Radiations with Matter
15.2 Radiation Detectors
15.2.1 Ionisation Chamber
15.2.2 Geiger-Muller Counter
15.2.3 Proportional Counter
15.3 Pulse Height Analyser
15.4 Scintillation Counter
15.5 Gamma Counters
15.5.1 Semiconductor Detectors
15.6 Liquid Scintillation Counters
15.7 Gamma Spectrometry
15.8 Neutron Activation Analysis Instruments
15.8.1 Neutron Activation Analysis
15.8.2 Principle of Neutron Activation
15.8.3 Neutron Sources
15.8.4 Instrumentation for Neutron Activation Analysis
16. X-Ray Spectrometers
16.1 X-Ray Spectrum
16.2 Instrumentation for X-Ray Spectrometry
16.2.1 X-Ray Generating Equipment
16.2.2 Collimators
16.2.3 Monochromators
16.2.4 X-ray Detectors
16.3 X-Ray Diffractometers
16.3.1 Diffraction and Bragg’s Law
16.4 X-Ray Absorption Meter
16.5 X-Ray Fluorescence Spectrometry
16.5.1 X-Ray Fluorescent Spectrometer
16.5.2 Total Reflection X-Ray Fluorescence Spectrometer
16.6 Electron Probe Micro-Analyser
17. Gas Chromatographs
17.1 Chromatography
17.2 Basic Definitions
17.2.1 Retention Time (tR)
17.2.2 Dead Time (tm)
17.2.3 Adjusted Retention Time (tR’)
17.2.4 Capacity Factor (or Partition Ratio) (k’)
17.2.5 Phase Ratio (b )
17.2.6 Distribution Constant (KD)
17.2.7 Selectivity (or Separation Factor) (a)
17.2.8 Linear Velocity (u)
17.2.9 Efficiency
17.3 Gas Chromatography
17.4 Basic Parts of a Gas Chromatograph
17.4.1 Carrier Gas Supply or the Mobile Phase
17.4.2 Sample Injection System and the Size of the Sample
17.4.3 Chromatographic Column
17.4.4 Thermal Compartment
17.4.5 Detection Systems
17.4.6 Recording Instruments
17.5 Methods of Measurement of Peak Areas
17.6 Gas Chromatograph-Mass Spectrometer (GC-MS)
17.7 Gas Chromatography–Infrared Spectroscopy
18. Liquid Chromatographs
18.1 Liquid Chromatography
18.2 Types of Liquid Chromatography
18.2.1 Column Chromatography
18.2.2 Thin-Layer Chromatography
18.2.3 Paper-Partition Chromatography
18.3 High Pressure Liquid Chromatograph (HPLC)
18.3.1 High-pressure Pump System
18.3.2 Sample Injection System
18.3.3 The Column
18.3.4 Detection Systems
18.3.5 Programmers and Readouts
18.4 Liquid Chromatograph-Mass Spectrometer (LC/MS)
18.4.1 Ion Sources
19. Automated Chemical Analysis Systems
19.1 Why Automate Chemical Analysis?
19.1.1 Basic Automatic Analysis System
19.1.2 Types of Automatic Analysis Techniques
19.1.3 Benefits of Automation in Chemical Analysis
19.2 Automated Biochemical Analysis System
19.3 Segmented-Flow System
19.3.1 Sampling Unit
19.3.2 The Proportioning Pump
19.3.3 Manifolds
19.3.4 Dialyser
19.3.5 Heating Bath
19.3.6 Measurement Techniques
19.3.7 Signal Processing and Data Handling
19.4 Flow Injection Analysis (FIA) Technique
19.4.1 Propelling Unit
19.4.2 Sample Injection System
19.4.3 Transport System
19.5 Semi-Automated Clinical Chemistry Analysers
19.6 Lab-On-Chip Technology
19.7 Dry Chemistry Clinical Analyser
20. Thermo-Analytical Instruments
20.1 Thermo-Analytical Methods
20.2 Thermogravimetric Analysis (TGA)
20.2.1 Instrumentation
20.3 Differential Thermal Analysis (DTA)
20.3.1 Instrumentation
20.4 Simultaneous Thermogravimetry/ Differential Thermal Analysis (TG/DTA)
20.5 Thermomechanical Analysis (TMA)
20.6 Differential Scanning Calorimetry
20.7 Simultaneous Thermal Analysis/Mass Spectrometer
21. Electrophoresis Apparatus and Densitometers
21.1 Electrophoresis
21.2 Slab Electrophoresis Apparatus
21.2.1 Electrophoresis Cabinet
21.2.2 Regulated Power Supply
21.3 Densitometers
21.3.1 Spectrodensitometers
21.3.2 Microprocessor-based Densitometer
21.4 Capillary Electrophoresis
21.4.1 Capillary Electrophoresis Instrumentation
21.5 Parallel Capillary Electrophoresis for DNA Sequencing
21.6 Micro-Electrophoresis
22. Electrochemical Instruments
22.1 Electrochemical Methods for Analysis
22.2 Electrochemical Cell
22.2.1 Types of Electrodes
22.3 Potentiostats
22.4 Types of Electrochemical Methods
22.5 Potentiometers
22.6 Conductivity Meters
22.6.1 Measurement of Conductance
22.6.2 Conductivity Cells
22.6.3 Temperature Compensation in Conductivity Measurements
22.6.4 Conductivity Measurements Using High Frequency Methods
22.7 Voltammetry
22.8 Polarographs
22.8.1 Basic Polarographic Instrument
22.8.2 Dropping Mercury Electrode
22.8.3 Reference Electrode
22.8.4 Typical Polarographs
22.9 Coulometers
22.10 Amperometers
22.11 Aquameters
22.12 General Purpose Electrochemical Instrumentation
23. pH Meters and Ion Analysers
23.1 What is pH?
23.2 Principle of pH Measurement
23.3 Electrodes for pH Measurement
23.3.1 The Hydrogen Electrode
23.3.2 Glass Electrode
23.3.3 Calomel Electrode or Reference Electrode
23.3.4 Silver/Silver Chloride Reference Electrode
23.3.5 Combination Electrode
23.3.6 The Asymmetry Potential
23.3.7 Buffer Solutions
23.3.8 Calibration
23.4 pH Meters
23.4.1 Design considerations for pH Meters
23.4.2 Digital pH Meters
23.4.3 pH Sensing Integrated Analog Front End
23.4.4 Industrial pH Meters
23.4.5 Failures in pH Meters
23.5 Selective-ION Electrodes
23.5.1 Advantages of Ion-Selective Electrode
23.5.2 Problems with ISE Measurements
23.5.3 Ammonia Electrode
23.5.4 Fluoride Electrode
23.5.5 Care and Maintenance of ISEs
23.5.6 Difference Between pH and Other Ion-Selective Electrodes
23.6 ION Analyzer
23.6.1 PC-based pH Meter Ion Analysers
23.7 Chemically Sensitive Semiconductor Devices
23.8 Biosensors
23.9 Point-of-Care Instruments
23.9.1 Point-of-Care Testing (POCT)
23.9.2 Blood Glucose Monitor
24. Blood Gas Analysers
24.1 Acid-Base Balance
24.2 Blood pH Measurement
24.2.1 Electrodes for Blood pH Measurement
24.2.2 Effect of Blood on Electrodes
24.2.3 Buffer Solutions
24.3 Measurement of Blood pCO2
24.3.1 Performance Requirements of pH Meters Used for pCO2 Measurement
24.4 Blood pO2 Measurement
24.5 A Complete Blood Gas Analyser
24.5.1 Fibre Optic-based Blood Gas Sensors
25. Industrial Gas Analysers and Process Instrumentation
25.1 Types of Gas Analysers
25.2 Paramagnetic Oxygen Analyser
25.3 Magnetic Wind Instruments
25.4 The Electrochemical Methods
25.4.1 Galvanic Methods
25.4.2 Polarographic Cells
25.4.3 Conductometric Method
25.5 Infrared Gas Analysers
25.6 Thermal Conductivity Analysers
25.7 Analysers Based on Gas Density
25.8 Method Based on Ionisation of Gases
25.9 Process Analysers
25.9.1 Process Photometers
25.9.2 CHN/O/S Analyser
25.9.3 Element Analyser Based on Tuneable Diode Laser Spectroscopy (TDLS)
25.10 Laboratory Robots for Process Industry
26. Particle Size Analysers
26.1 Particles and Their Characteristics
26.1.1 Which Particle Properties Are Important to Measure?
26.1.2 How Do We Define Particle Size?
26.1.3 Distribution Statistics
26.2 Particle Size Measurements
26.2.1 Imaging vs. Non-imaging Techniques
26.2.2 Laser Diffraction Particle Sizing
26.2.3 Dynamic Light Scattering (DLS)
26.2.4 Electrophoretic Light Scattering (ELS)
26.2.5 Acoustic Spectroscopy for Particle Sizing
26.2.6 Automated Imaging
26.3 Particle Counters
26.3.1 Coulter Principle Method
26.3.2 Blood Cell Counters
26.3.3 Errors in Electronic Counters
26.4 Portable Coulter Counters
26.4.1 Handheld Automated Cell Counter and Analyser
26.4.2 Blood Cell Counter for Point-of-Care Testing (POCT)
27. Environmental Pollution Monitoring Instruments
27.1 Air Pollution Monitoring Instruments
27.1.1 Representation of Concentration of Gases
27.1.2 Types and Concentration of Various Gas Pollutants
27.1.3 Instrumental Techniques and Measurement Range
27.2 Air Pollution Monitoring Stations
27.3 Carbon Monoxide
27.3.1 Non-dispersive Infrared Analyser
27.4 Sulphur Dioxide
27.4.1 Conductivitimetry
27.4.2 Ultraviolet Fluorescence Method
27.5 Nitrogen Oxides
27.5.1 Chemiluminescence
27.5.2 Use of CO Laser
27.5.3 Laser Opto-acoustic Spectroscopy
27.5.4 UV-based NO Analyser
27.5.5 Combined SO2 and NO Analyser
27.6 Hydrocarbons
27.6.1 Flame Ionization Detector (FID)
27.7 Ozone
27.7.1 Chemiluminescence
27.7.2 Conductivitimetry
27.8 Automated Wet-Chemical Air Analysis
27.9 Measuring Methods for Particulate Matter
27.9.1 Gravimetric Method
27.9.2 Beta Attenuation Monitoring (BAM)
27.10 Remote Monitoring
27.10.1 LIDAR
27.11 Water Pollution Monitoring Instruments
27.11.1 Types of Pollutants and Techniques
27.11.2 Conductivity
27.11.3 Dissolved Oxygen
27.11.4 pH Measurement
27.11.5 Oxidation-reduction Potential (ORP)
27.11.6 Temperature
27.11.7 Turbidity
27.12 In Situ Measurements
27.13 Oil in Water Applications
28. Computer-Based Analytical Instruments
28.1 Computers in Analytical Laboratories
28.2 Digital Computer
28.2.1 Input-Output Systems
28.2.2 Storage Memory Systems
28.2.3 Offline/Online Computers
28.2.4 Dedicated Computers
28.3 Types of Computers
28.4 Modems
28.5 Computer Software
28.5.1 System Software
28.5.2 Application Software
28.5.3 Software Creation
28.5.4 Popular Software Packages
28.6 Interconnecting Laboratory Instruments to Computers
28.6.1 Types of Interfaces
28.6.2 Analog Interfaces
28.6.3 Digital I/O Interfaces
28.6.4 Serial Interface
28.7 Computer Networks
28.7.1 Local Area Network
28.7.2 LAN Communication Using TCP/IP
28.7.3 Wide Area Network (WAN)
28.8 Laboratory Information Management System (LIMS)
28.9 Smart Laboratory
29. Electronic Devices and Circuits
29.1 Electronic Components
29.1.1 Active vs. Passive Components
29.1.2 Discrete vs. Integrated Circuits
29.2 Passive Components
29.3 Semiconductor Devices
29.3.1 P-N Junction
29.3.2 Semiconductor Diode
29.4 Transistors
29.4.1 Bipolar Transistors
29.4.2 Field-Effect Transistor (FET)
29.4.3 MOSFET
29.5 Integrated Circuits
29.6 Operational Amplifiers (OP-AMPS)
29.6.1 Symbolic Representation
29.6.2 Power Supply Requirements for Op-Amps
29.6.3 Output Voltage Swing
29.6.4 Output Current
29.6.5 Characteristics of Op-Amps
29.6.6 Performance Characteristics of Op-Amps
29.6.7 Typical Op-Amp Circuits
29.7 Sources of Noise in Electronic Circuits
29.7.1 Thermal Noise or Johnson Noise
29.7.2 Shot Noise
29.7.3 Flicker Noise
29.7.4 Environmental Noise
29.8 Sources of Noise in Low-Level Measurements
29.8.1 Electrostatic and Electromagnetic Coupling to AC Signals
29.8.2 Proper Grounding (Common Impedance Coupling)
29.9 Noise Reduction Techniques
29.9.1 Hardware Techniques
29.9.2 Software Techniques
29.10 Power Supplies
29.10.1 Types of Regulators
29.10.2 IC Regulators
29.10.3 Three-pin Voltage Regulators
29.10.4 Switched Mode Power Supplies (SMPS)
29.11 High Voltage DC Power Supplies
30. Digital Circuits
30.1 Digital Circuits
30.1.1 Binary Number System
30.1.2 Truth Tables
30.1.3 Logic Circuits
30.1.4 Logic Convention
30.2 Types of Logic Circuits
30.2.1 The AND Gate
30.2.2 The OR Gate
30.2.3 The INVERTER (NOT) Gate
30.2.4 The NAND (NOT-AND) Gate
30.2.5 The NOR Gate
30.2.6 The EXCLUSIVE-OR (EX-OR) Gate
30.2.7 The INHIBIT Gate
30.3 Logic Families
30.3.1 Transistor-Transistor Logic (TTL)
30.3.2 Emitter-Coupled Logic (ECL)
30.3.3 CMOS Logic Families
30.3.4 Characteristics of Integrated Circuit Logic Gates
30.4 Categories of IC’s Based on Packing Density
30.5 Typical Digital Integrated Circuits
30.5.1 Flip-Flops
30.5.2 Counters
30.5.3 Registers
30.5.4 Multiplexer
30.5.5 Demultiplexer
30.5.6 Encoders
30.5.7 Decoders
30.5.8 Tristate Logic
30.6 Semiconductor Memories
30.6.1 Random Access Memory
30.6.2 Read-Only Memory (ROM)
30.7 Microprocessor
30.8 Micro-Controllers
30.9 Embedded Systems
30.10 Data Converters
30.10.1 A/D Converters
30.10.2 Key Parameters in A/D Converters and Their Selection
30.10.3 D/A Converters
30.11 Digital Signal Processing
30.12 Data Acquisition Systems for Analytical Instruments
References
Index